Refine Your Search

Topic

Author

Search Results

Technical Paper

A Heavy Truck Cab Suspension for Improved Ride

1978-02-01
780408
This paper presents a simplified concept of the cab-over-engine tractor ride problem. It discusses ways ride can be improved and the reasons cab suspension was chosen as the preferred solution. It describes the Ford CL-9000 cab suspension, explains why it improves ride and includes some data to indicate the benefits that are realized.
Technical Paper

An Objective Approach to Highway Truck Frame Design

1966-02-01
660162
The design requirements for the frame as a load carrying member are discussed in relationship to a highway truck and its basic vehicle package. The theoretical and experimental procedures are given in detail to demonstrate the techniques for frame design. The features of a method to laboratory test a frame with correlation to service miles is discussed.
Technical Paper

Frame Beaming, Fifth Wheel Location — Special Body Mounting and Loading Problems

1965-02-01
650179
Discussion of four factors pertinent to any overall ride evaluation. These factors are frame beaming, fifth wheel location, special body mountings, and variable loading conditions on tandem truck and tractor ride. The methodology for measuring the characteristics of these factors is reviewed and practical solutions for improved ride are given.
Technical Paper

New Ford Midrange Diesel Trucks

1969-02-01
690119
When Ford decided to offer a midrange diesel engine family in medium trucks, it was recognized that the power-train had to be considered as a complete system in order to assure optimum compatibility. This paper describes how program objectives were established and the necessary validation programs for the truck, engine, and the chassis were conducted.
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

The Development of Ford's Natural Gas Powered Ranger

1985-11-11
852277
Operation of America's first factory built vehicles modified to operate on natural gas began in April, 1984, when Ford Motor Company delivered the first of 27 specially equipped 1984 Ranger pickup trucks to 25 major utility and natural gas related companies in the United States and Canada. In addition to the fuel system, modifications to these test vehicles include a 12.8:1 compression ratio engine and a unique distributor calibration to provide performance similar to the gasoline powered vehicle. The fuel tanks are significantly more expensive than gasoline tanks and remain one of the major cost issues with a natural gas powered vehicle. There are however, no unresolvable technological issues that would prevent motor vehicles from operating economically and efficiently on natural gas.
Technical Paper

Development of Van Driver Eye Ellipses*

1971-02-01
710541
This study was undertaken to determine to what extent the passenger car eye ellipses have applicability in van-type truck package design and to produce a new practical design tool, if necessary. Eye positions of van drivers were found to be distributed differently from those for passenger car drivers and from those obtained by the procedure outlined in SAE J941b, Motor Vehicle Driver's Eye Range. There were produced in this study, tables of parameter values that a van-package designer can use readily to position eye-location distributions in space as a function of the azimuth and elevation angles of many targets in the forward field of view. These tables are available upon request from SAE.
Technical Paper

The Mvma Investigation Into the Complexities of Heavy Truck Splash and Spray Problem

1985-01-01
856097
Splash and spray conditions created by tractor-trailer combinations operating on the Federal highway system have been studied and tested for many years with mixed results. Past events are reviewed briefly in this paper. In additional testing during 1983, using new state-of- the-art splash/spray suppressant devices, some encouragement was provided that these devices could work. The 1984 Motor Vehicle Manufacturers Association (MVMA) test program was designed to develop practicable and reliable test procedures to measure effectiveness of splash and spray reduction methods applied to tractor-trailer combination vehicles. Over 40 different combinations of splash/spray suppression devices on five different tractors and three van trailer types were tested. The spray-cloud densities for some 400 test runs were measured by laser transmissometers and also recorded by still photography, motion pictures, and videotape. On-site observers made subjective ratings of spray density.
Technical Paper

Experimental Study of CD Variation With Aspect Ratio

1999-03-01
1999-01-0649
There is little information in the technical literature about the dependence of drag coefficient, CD, on aspect ratio (height/width) for car and truck aerodynamics. Some of the information suggests that CD should increase with aspect ratio as the flow over the body becomes more two dimensional. Recent tests of candidate shapes for a commercial van with various roof heights suggested the opposite is true; the taller vans had lower drag coefficients. This report discusses the results of several experimental investigations to examine this relationship. Scale model and production drag measurements of commercial vans are presented along with drag measurements of simple shapes. The shapes consisted of eight radiused rectangular boxes of constant length and frontal area, but with different height/width ratios. The effects of underbody roughness and bumper presence were evaluated and are discussed.
Technical Paper

Vapor and Liquid Composition Differences Resulting from Fuel Evaporation

1999-03-01
1999-01-0377
Liquid fuels and the fuel vapors in equilibrium with them typically differ in composition. These differences impact automotive fuel systems in several ways. Large compositional differences between liquid and vapor phases affect the composition of species taken up within the evaporative emission control canister, since the canister typically operates far from saturation and doesn't reach equilibrium with the fuel tank. Here we discuss how these differences may be used to diagnose the mode of emission from a sealed container, e.g., a fuel tank. Liquid or vapor leaks lead to particular compositions (reported here) that depend on the fuel components but are independent of the container material. Permeation leads to emissions whose composition depends on the container material. If information on the relative permeation rates of the different fuel components is available, the results given here provide a tool to decide whether leakage or permeation is the dominant mode of emission.
Technical Paper

A Multibody Dynamics Approach to Leaf Spring Simulation for Upfront Analyses

2015-06-15
2015-01-2228
Drivelines used in modern pickup trucks commonly employ universal joints. This type of joint is responsible for second driveshaft order vibrations in the vehicle. Large displacements of the joint connecting the driveline and the rear axle have a detrimental effect on vehicle NVH. As leaf springs are critical energy absorbing elements that connect to the powertrain, they are used to restrain large axle windup angles. One of the most common types of leaf springs in use today is the multi-stage parabolic leaf spring. A simple SAE 3-link approximation is adequate for preliminary studies but it has been found to be inadequate to study axle windup. A vast body of literature exists on modeling leaf springs using nonlinear FEA and multibody simulations. However, these methods require significant amount of component level detail and measured data. As such, these techniques are not applicable for quick sensitivity studies at design conception stage.
Technical Paper

Sound Package Design for Lightweight Vehicles

2015-06-15
2015-01-2343
OEMs are racing to develop lightweight vehicles as government regulations now mandate automakers to nearly double the average fuel economy of new cars and trucks by 2025. Lightweight materials such as aluminum, magnesium and carbon fiber composites are being used as structural members in vehicle body and suspension components. The reduction in weight in structural panels increases noise transmission into the passenger compartment. This poses a great challenge in vehicle sound package development since simply increasing weight in sound package components to reduce interior noise is no longer an option [1]. This paper discusses weight saving approaches to reduce noise level at the sources, noise transmission paths, and transmitted noise into the passenger compartment. Lightweight sound package materials are introduced to treat and reduce airborne noise transmission into multi-material lightweight body structure.
Technical Paper

Carbon Canister Development for Enhanced Evaporative Emissions and On-Board Refueling

1997-02-24
970312
Automotive fuel vapor emissions that would otherwise evaporate into the atmosphere are being captured in activated carbon vapor storage canisters. Fuel vapor is loaded into the canisters via a direct connection to the fuel tank vapor dome. Hydrocarbons are desorbed from the activated carbon into the engine combustion cylinders using engine intake vacuum. The carbon canister capacity requirements have increased in recent years in order to meet both Enhanced Evaporative Emission regulations and the Clean Air Act emission requirements for On-board Refueling Vapor Recovery (ORVR). The higher capacity requirements have generated the need for larger volume canisters that can meet the emission requirements and still be designed within the space and packaging limits of the vehicle application. This paper describes the simultaneous engineering approach used at Ford Motor Company to design a large volume cylindrical shaped carbon canister.
Technical Paper

A Mainstream Test Methodology for Developing a Vehicle Equipped with an Electronic Stability Control System

2014-04-01
2014-01-0130
There have been many articles published in the last decade or so concerning the components of an electronic stability control (ESC) system, as well as numerous statistical studies that attempt to predict the effectiveness of such systems relative to crash involvement. The literature however is free from papers that discuss how engineers might develop such systems in order to achieve desired steering, handling, and stability performance. This task is complicated by the fact that stability control systems are very complex and their designs and what they can do have changed considerably over the years. These systems also differ from manufacturer to manufacturer and from vehicle to vehicle in a given maker of automobiles. In terms of ESC hardware, differences can include all the components as well as the addition or absence of roll rate sensors or active steering gears to name a few.
Technical Paper

Light Truck Aerodynamic Simulations Using a Lattice Gas Based Simulation Technique

1999-11-15
1999-01-3756
Several studies have been conducted in an effort to bring Computational Fluid Dynamics (CFD) out of the research arena (5) and into the product design environment as a useful aerodynamic design tool. The focus of these studies has ranged from extremely simple shapes to more complex geometries representative of real vehicles. This paper presents the results of real vehicle applications in which CFD was used to predict the aerodynamic effect of proposed surface modifications. The simulation data was generated using a numerical method derived from lattice gas theory to evaluate the aerodynamic effect of surface modifications. The commercial software Powerflow was used to prepare the model, perform the simulation and post-process the results. These case studies were performed in parallel with real vehicle development programs. The depth of experimental comparison data was limited by traditional vehicle program timing and budget constraints.
Journal Article

Blowdown Interference on a V8 Twin-Turbocharged Engine

2011-04-12
2011-01-0337
The exhaust blowdown pulse from each cylinder of a multi-cylinder engine propagates through the exhaust manifold and can affect the in-cylinder pressure of other cylinders which have open exhaust valves. Depending on the firing interval between cylinders connected to the same exhaust manifold, this blowdown interference can affect the exhaust stroke pumping work and the exhaust pressure during overlap, which in turn affects the residual fraction in those cylinders. These blowdown interference effects are much greater for a turbocharged engine than for one which is naturally aspirated because the volume of the exhaust manifolds is minimized to improve turbocharger transient response and because the turbines restrict the flow out of the manifolds. The uneven firing order (intervals of 90°-180°-270°-180°) on each bank of a 90° V8 engine causes the blowdown interference effects to vary dramatically between cylinders.
Technical Paper

Design and Analysis of the Ford GT Spaceframe

2004-03-08
2004-01-1255
The Ford GT is a high performance sports car designed to compete with the best that the global automotive industry has to offer. A critical enabler for the performance that a vehicle in this class must achieve is the stiffness and response of the frame structure to the numerous load inputs from the suspension, powertrain and occupants. The process of designing the Ford GT spaceframe started with a number of constraints and performance targets derived through vehicle dynamics CAE modeling, crash performance requirements, competitive benchmarking and the requirement to maintain the unique styling of the GT40 concept car. To achieve these goals, an aluminum spaceframe was designed incorporating 35 different extrusion cross-sections, 5 complex castings, 4 smaller node castings and numerous aluminum stampings.
Technical Paper

Ford 2011 6.7L Power Stroke® Diesel Engine Combustion System Development

2011-04-12
2011-01-0415
A new diesel engine, called the 6.7L Power Stroke® V-8 Turbo Diesel, and code named "Scorpion," was designed and developed by Ford Motor Company for the full-size pickup truck and light commercial vehicle markets. The combustion system includes the piston bowl, swirl level, number of nozzle holes, fuel spray angle, nozzle tip protrusion, nozzle hydraulic flow, and nozzle-hole taper. While all of these parameters could be explored through extensive hardware testing, 3-D CFD studies were utilized to quickly screen two bowl concepts and assess their sensitivities to a few of the other parameters. The two most promising bowl concepts were built into single-cylinder engines for optimization of the rest of the combustion system parameters. 1-D CFD models were used to set boundary conditions at intake valve closure for 3-D CFD which was used for the closed-cycle portion of the simulation.
X